Technologies for explosion protection
There are many types of devices and systems used to comply with NFPA standards for the explosion protection of dust collection systems, but they fall into two general categories: passive and active. Passive systems react to the event, while active systems detect and react prior to or during the event.
The goal of a passive system is to control an explosion so as to keep employees safe and minimize equipment damage in the plant. An active system, by contrast, can prevent an explosion from occurring. An active system involves much more costly technology and typically requires re-certification every three months.
Passive devices include:
- Explosion venting: Designed to be the “weak” link of the dust collector vessel, an explosion vent opens when predetermined pressures are reached inside the collector, allowing the excess pressure and flame front to exit to a safe area. It is designed to minimize damage to the collector and prevent it from blowing up in the event of a deflagration, thereby reducing the hazard. (Figure 2)
- Flameless venting: Designed to install over a standard explosion vent, a flameless vent extinguishes the flame front exiting the vented area, not allowing it to exit the device. This allows conventional venting to be accomplished indoors where it could otherwise endanger personnel and/or ignite secondary explosions. (Figure 3)
- Passive float valve: Designed to be installed in the outlet ducting of a dust collection system, this valve utilizes a mechanical barrier to isolate pressure and flame fronts caused by the explosion from propagating further through the ducting. The mechanical barrier reacts within milliseconds and is closed by the pressure of the explosion.
- Flow operated flap valve: This is a mechanical back draft damper positioned in the inlet ducting. It utilizes a mechanical barrier that is held open by the process air and is slammed shut by the pressure forces of the explosion. When closed, this barrier isolates pressure and flame fronts from being able to propagate further up the process stream.
- Flame front diverters: These devices divert the flame front to atmosphere and away from the downstream piping. Typically, these devices are used between two different vessels equipped with their own explosion protection systems. The flame front diverter is used to eliminate “flame jet ignition” between the two vessels that could overpower the protection systems installed.
- Chemical isolation: Designed to react within milliseconds of detecting an explosion, a chemical suppression system can be installed in either inlet and/or outlet ducting. Typical components include explosion pressure detector(s), flame detector, and a control panel. This system creates a chemical barrier that suppresses the explosion within the ducting and reduces the propagation of flame through the ducting and minimizes pressure increase within connected process equipment.
- Chemical suppression: Whereas chemical isolation is used to detect and suppress explosions within the ducting, chemical suppression protects the dust collector itself. It is often used, together with isolation, when it is not possible to safely vent an explosion or where the dust is harmful or toxic. The system detects an explosion hazard within milliseconds and releases a chemical agent to extinguish the flame before an explosion can occur.
- Fast acting valve: Designed to close within milliseconds of detecting an explosion, the valve installs in either inlet and/or outlet ducting. It creates a mechanical barrier within the ducting that effectively isolates pressure and flame fronts from either direction, preventing them from propagating further through the process.
- High-speed abort gate: The gate is installed in the inlet and /or outlet ducting of a dust collection system and is used to divert possible ignition hazards from entering the collector, preventing a possible explosion from occurring and preventing flame and burning debris from entering the facility through the return air system. A mechanical barrier diverts process air to a safe location. Abort gates are activated by a spark detection system located far enough upstream to allow time for the gate to activate.
When planning explosion protection, don’t overlook additional devices and materials that can help reduce fire risk within the dust collection system. For spark-generating applications, a range of features and technologies are available, from flame-retardant and carbon anti-conductive filter media to spark arrestors in the form of drop-out boxes, perforated screens or cyclone device installed at the collector inlet. Fire sprinkler systems may also be required with some installations.
A dust collector that uses vertically-mounted filter cartridges can also reduce fire and explosion risks. With horizontally-mounted cartridges, dust becomes trapped in the pleats in the upper third of the filters (Figure 4). This dust will become dispersed during a deflagration providing unnecessary excessive amounts of extra fuel for the event. Horizontal cartridges are also exposed to all of the dust entering the collector, coarse and fine. This leads to premature failure from abrasion and leaks. These leaks can go unnoticed for quite some time while fine combustible dust is blown into your facility. Vertically-mounted filters use baffle systems to segregate much of the dust into the hopper, which reduces the load on the filters and helps eliminate these problems.
----------------------
In our next blog post, we'll take a look at close look at mistakes, misconceptions and pitfalls that we have commonly encountered. If you wish, you can download the entire white paper now.